Translate

Showing posts with label (TEL T30). Show all posts
Showing posts with label (TEL T30). Show all posts

Apr 8, 2020

Confirmation Images of COMET C/2020 F5 (MASTER) on 2020-04-05 from Siding Spring Observatory Australia (MPC Q62)


Confirmation Images of COMET C/2020 F5 (MASTER)  on 2020-04-05 from Siding Spring Observatory Australia (MPC Q62)


Congratulations to

Y. Kechin, S. Bodrov, V.   Lipunov, E. Gorbovskoy, N. Tiurina, P. Balanutsa, A. Kuznetsov, I. Gorbunov,   F. Balakin, D. Zimnukhov, V. Kornilov, R. Podesta, F. Podesta, H. Levato, A. Krylov, C. Francile.

with 

MASTER-OAFA Observatory, San Juan, Argentina (MPC Code W92)

See:

MPEC 2020-G73 : COMET C/2020 F5 (MASTER)
https://www.minorplanetcenter.net/mpec/K20/K20G73.html

Credits

The targeting information was obtained from the
The Minor Planet Center (MPC)
http://www.minorplanetcenter.net/

The images where taken with iTelescope.net's
T30 (0.50-m f/6.8 reflector + CCD)  Siding Spring Observatory Australia (MPC Q62)
http://iTelescope.Net/

Data reduction, a stacked image, Image blinking,  and  the object verification windows was done with Astrometrica
http://www.astrometrica.at/

Image blinking and a stacked image  was done with CCDStack2
http://www.ccdware.com/

The data was examine with the help of
Find_Orb Orbit determination software - Project Pluto
http://www.projectpluto.com/find_orb.htm

(c) Steven M. Tilley
http://lagniappeobserving.com

Apr 2, 2020

The NEO[Apollo] 2017 ES2 on 2020-03-30 from Siding Spring Observatory Australia (MPC Q62).

The NEO[Apollo] 2017 ES2 on 2020-03-30 from Siding Spring Observatory Australia (MPC Q62).

 

The NEO[Apollo] 2017 ES2 on 2020-03-30 from Siding Spring Observatory Australia (MPC Q62)
By Steven M. Tilley

Credits

The targeting information was obtained from the
The Minor Planet Center (MPC)
http://www.minorplanetcenter.net/

The images where taken with iTelescope.net's
T30 (0.50-m f/6.8 reflector + CCD)  Siding Spring Observatory Australia (MPC Q62)
http://iTelescope.Net/

Data reduction,  the stacked image, and  the object verification windows was done with Astrometrica
http://www.astrometrica.at/


Image blinking  was done with CCDStack2
http://www.ccdware.com/

Music
Attack of the Mole Men - Stings by Kevin MacLeod is licensed under a Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/)

Source: http://incompetech.com/music/royalty-free/index.html?isrc=USUAN1100321
Artist: http://incompetech.com/

The data was examine with the help of
Find_Orb Orbit determination software - Project Pluto
http://www.projectpluto.com/find_orb.htm
(c) Steven M. Tilley
http://lagniappeobserving.com

Jan 14, 2019

Observing The NEO 2019 AG7 on 2019-01-13 from Siding Spring Australia


The asteroid 2019 AG7(Classification: Aten [NEO])
[Estimated Diameter 23 m - 51 m]
on 2019-01-13
from Siding Spring Observatory,
 Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 12 - 5 second luminance BIN2 images
taken with iTelescope.net's (T30)
By Steven M. Tilley



The asteroid 2019 AG7(Classification: Aten [NEO])
[Estimated Diameter 23 m - 51 m]
on 2019-01-13
from Siding Spring Observatory,
 Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 12 - 5 second luminance BIN2 images
taken with iTelescope.net's (T30)
By Steven M. Tilley
..

The asteroid 2019 AG7(Classification: Aten [NEO])
[Estimated Diameter 23 m - 51 m]
on 2019-01-13
from Siding Spring Observatory,
 Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 12 - 5 second luminance BIN2 images
taken with iTelescope.net's (T30)
By Steven M. Tilley

Orbit diagram 2019 AG7
Earth Distance: 0.014 AU
Sun Distance: 0.988 AU
courtesy of NASA/JPL-Caltech
2019-01-13 13:25 UTC
https://ssd.jpl.nasa.gov/sbdb.cgi?sstr=2019AG7


Background
(as of 2019-01-13)
  • Object:2019 AG7 
  • Orbit Type: Aten [NEO]
  • Approximate Diameter: 23 m to 51 m (75.4593 feet to  167.323) (Absolute Magnitude: H= 25.32)
  • On the Sentry Risk Table:  Yes 
    •  NOTE this is NOT a prediction of an impact but rather a statement there is insufficient observational data rule out an impact -- for more information read  Understanding Risk Pages by Jon Giorgini
    • "The likelihood of a collision is zero, or is so low as to be effectively zero. Also applies to small objects such as meteors and bodies that burn up in the atmosphere as well as infrequent meteorite falls that rarely cause damage.."
  •  On the NEODyS CLOMON2 risk page: Yes
  • First(Precovery) Observation was made: 2018 12 31.614374(By Pan-STARRS 1, Haleakala, US/Hawaii.  (MPC Code F51))
  • Discovery observation was made:2019 01 09.37994 (By the Catalina Sky Survey, US/Arizona. (MPC Code 703)
  • Last Observation(publish): 2019 01 12.582898 (By Mauna Kea-UH/Tholen NEO Follow-Up (2.24-m) (MPC Code T12)
  • Data-Arc Span (publish): 12 days
  • Number of Optical Observations(published):54
  • Observatories Reporting (Published) Observations(MPC Code): 
    • (204) Schiaparelli Observatory,Italy. 
    • (291) LPL/Spacewatch II, US/Arizona.  
    • (474) Mount John Observatory, Lake Tekapo, New Zealand. 
    • (703) Catalina Sky Survey, US/Arizona. 
    • (807) Cerro Tololo Observatory, La Serena, Chile.
    • (F51) Pan-STARRS 1, Haleakala  (N20.707235 W156.255910)  US/Hawaii.
    • (F65) Haleakala-Faulkes Telescope North, US/Hawaii. 
    • (G40) Slooh.com Canary Islands Observatory, Canary Islands (Spain).
    • (I52) Steward Observatory, Mt. Lemmon Station
    • (J04) ESA Optical Ground Station, Tenerife, Canary Islands (Spain). 
    • (J95) Great Shefford,UK. 
    • (L01) Višnjan Observatory, Tičan, Croatia.
    • (T05) ATLAS-HKO, Haleakala, US/Hawaii. 
    • (T12) Mauna Kea-UH/Tholen NEO Follow-Up (2.24-m), US/Hawaii. 
  • Perihelion Distance: 0.4829280277140071(AU)
  • Aphelion Distance: 1.007267187900272(AU)
  • Earth MOID: 0.00482722(AU),  1.879 (LD), 113.348270821(Earth Radii), 448,718.132 (Miles), or 722,141.833(KM)
  • Close-Approach to Earth: Will safely pass Earth on 2019-Jan-15 at a Nominal Distance of  0.0100782635426263(AU), 3.922(LD), 236.648370166 (Earth Radii), 936,833.123(Miles), or 1,507,686.766(KM)

Sep 9, 2018

Follow-up Observations of 2018 RQ1

The NEO(Aten) 2018 RQ1 (approximate diameters 39 m - 88 m [127.953 foot - 288.7139 foot]) was first observed by the Catalina Sky Survey on 2018-09-07.  As of 2018-09-09 2018 RQ1 as a data-arc span of 31.5 hr with 22 published observations. 2018 RQ1 is listed on the NASA/JPL Sentry and NEODyS CLOMON2 risk pages.(as of 2018-09-09) In an  effort to help with the improvement  of the known orbit I had iTelescope.net's(T30) start taking images and was able to obtain 22-30 Second Luminance BIN2. I use Astrometrica to do the data reduction by way of the stack and track method. I had Astrometrica stack 3 sets(stacks) of  7 images.  Each image was shifted match the movement of  2018 RQ1.

An image of the NEO 2018 RQ1
on 2018-09-09 from
Siding Spring Observatory,
Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 22-30 second luminance BIN2 images
taken with iTelescope.net's (T30)
by Steven M. Tilley

An image of the NEO 2018 RQ1
on 2018-09-09 from
Siding Spring Observatory,
Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 7-30 second luminance BIN2 images
taken with iTelescope.net's (T30)
by Steven M. Tilley

An image of the NEO 2018 RQ1
on 2018-09-09 from
Siding Spring Observatory,
Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 7-30 second luminance BIN2 images
taken with iTelescope.net's (T30)
by Steven M. Tilley


An image of the NEO 2018 RQ1
on 2018-09-09 from
Siding Spring Observatory,
Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 7-30 second luminance BIN2 images
taken with iTelescope.net's (T30)
by Steven M. Tilley



see
Accessible NEA(Object/Trajectory Details for 2018 RQ1)

Aug 19, 2018

Helping With The Confirmation of the Mars-crossing Asteroid 2018 PO23

On 2018-08-13 I check the NEO Confirmation Page(NEOCP) and  an object clalled ZTF00Th.
Orbit diagram for 2018 PO23
(view 1)
2018-08-13 12:35 UTC
Earth Distance: 0.723 au
Sun Distance: 1.691 au
courtesy of NASA/JPL-Caltech
https://ssd.jpl.nasa.gov/sbdb.cgi?sstr=2018PO23
Orbit diagram for 2018 PO23
(view 2)
2018-08-13 12:35 UTC
Earth Distance: 0.723 au
Sun Distance: 1.691 au
courtesy of NASA/JPL-Caltech
https://ssd.jpl.nasa.gov/sbdb.cgi?sstr=2018PO23
Orbit diagram for 2018 PO23
(view 3)
2018-08-13 12:35 UTC
Earth Distance: 0.723 au
Sun Distance: 1.691 au
courtesy of NASA/JPL-Caltech
https://ssd.jpl.nasa.gov/sbdb.cgi?sstr=2018PO23

I was able to obtain a  set of  4-60 second luminance BIN2 images taken with iTelescope.net's (T30) and a set 12-60 second luminance BIN2 images taken with iTelescope.net's (T30). I use Astrometrica to do the data reduction by way of the stack and track method. I had Astrometrica stack 3 sets(stacks) of 3 images.  Each image was shifted match movement of ZTF00Th.
A confirmation image of the Mars-crossing Asteroid 2018 PO23
on 2018-08-13 from Siding Spring Observatory,
Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 4-60 second luminance BIN2 images
taken with iTelescope.net's (T30)
Steven M. Tilley
A confirmation image of the Mars-crossing Asteroid 2018 PO23
on 2018-08-13 from Siding Spring Observatory,
Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 4-60 second luminance BIN2 images
taken with iTelescope.net's (T30)
By Steven M. Tilley
A confirmation image of the Mars-crossing Asteroid 2018 PO23
on 2018-08-13 from Siding Spring Observatory,
Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 4-60 second luminance BIN2 images
taken with iTelescope.net's (T30)
Steven M. Tilley
A confirmation image of the Mars-crossing Asteroid 2018 PO23
on 2018-08-13 from Siding Spring Observatory,
Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 4-60 second luminance BIN2 images
taken with iTelescope.net's (T30)
By Steven M. Tilley
Then I  submitted this batch of  4 observation to the Minor Planet Center.
About 14 hours later I  obtain a  set of  60-60 second luminance BIN2 images taken with iTelescope.net's(T11) I had Astrometrica stack 3 stacks of 15 images ( note a star keep me from having  4 stacks of 15 images)
 
A confirmation image of the Mars-crossing Asteroid 2018 PO23
on 2018-08-14 from from Mayhill,
New Mexico [New Mexico Skies](MPC Code H06)
 a stack of 15-60 second luminance BIN2 images
taken with iTelescope.net's (T11)
By Steven M. Tilley
A confirmation image of the Mars-crossing Asteroid 2018 PO23
on 2018-08-14 from from Mayhill,
New Mexico [New Mexico Skies](MPC Code H06)
 a stack of 15-60 second luminance BIN2 images
taken with iTelescope.net's (T11)
By Steven M. Tilley
A confirmation image of the Mars-crossing Asteroid 2018 PO23
on 2018-08-14 from from Mayhill,
New Mexico [New Mexico Skies](MPC Code H06)
 a stack of 15-60 second luminance BIN2 images
taken with iTelescope.net's (T11)
By Steven M. Tilley
Then I  submitted this batch of  3 observation to the Minor Planet Center.
After another ten  hours I  obtain a  set of  60-60 second luminance BIN2 images taken with iTelescope.net's(T17) I had Astrometrica stack 3 stacks of 15 images ( note the first 9 images where on the "wrong" side of the meridian flip)
 A confirmation image of the Mars-crossing Asteroid 2018 PO23
on 2018-08-14 from Siding Spring Observatory,
Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 15-60 second luminance BIN2 images
taken with iTelescope.net's (T17)
By Steven M. Tilley
A confirmation image of the Mars-crossing Asteroid 2018 PO23
on 2018-08-14 from Siding Spring Observatory,
Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 15-60 second luminance BIN2 images
taken with iTelescope.net's (T17)
By Steven M. Tilley
A confirmation image of the Mars-crossing Asteroid 2018 PO23
on 2018-08-14 from Siding Spring Observatory,
Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 15-60 second luminance BIN2 images
taken with iTelescope.net's (T17)
By Steven M. Tilley
Then I  submitted this batch of 3  observation to the Minor Planet Center.

After 110 observations,  collectively made from 27 observatories from around the world, at Aug. 16.90, 2018 the Minor Planet Center gave  ZTF00Th. the provisional designation 2018 PO23 and removed it form the NEOCP.

Aug 10, 2018

The of Confirmation of the Asteroid the 2018 PL9

On 2018-08-07 at ~ 10:30 UTC  observers with ATLAS (Asteroid Terrestrial-Impact Last Alert System) imaged a "new" asteroid.  Over the next  ~ 35 minutes, the  ATLAS term would take three additional observations.  The observations were submitted to the Minor Planet Center(MPC) in Cambridge, Massachusetts using the observer-assigned temporary designation A107TVP.  This  "new" asteroid was posted to the NEO Confirmation Page(NEOCP) informing observers around the world that "A107TVP" needed confirmation observations.  
  
Asteroid Orbit diagram for 2018 PL9 [NEO(Amor)]
Approximate Diameter 350 to 900 Meters
2018-08-07 10:30 UTC  
courtesy of NASA/JPL-Caltec
https://ssd.jpl.nasa.gov/sbdb.cgi?sstr=2018PL9

Asteroid Orbit diagram for 2018 PL9 [NEO(Amor)]
Approximate Diameter 350 to 900 Meters
2018-08-07 10:30 UTC  
courtesy of NASA/JPL-Caltec
https://ssd.jpl.nasa.gov/sbdb.cgi?sstr=2018PL9
About five hours later I checked the NEOCP saw A107TVP listed(by this time it had "precovery" observations from Pan-STARRS 1, Haleakala.), and decided to take confirmation images. I had iTelescope.Net's T30 to started taking 60 second luminance BIN2 images and was able to obtain 28 images. I use Astrometrica to do the data reduction by way of the stack and track method. I had Astrometrica stack 3 sets(stacks) of 9 images.  Each image was shifted match movement of A107TVP.
A confirmation image of the NEOCP(NEO Confirmation Page)
object A107TVP(now 2018 PL9) on 2018-08-07
 from Siding Spring Observatory, Coonabarabran, NSW, Australia. (MPC Q62) 
a stack of 9 - 60 second luminance BIN2 images 
 taken with iTelescope.net's (T30) 
 By Steven M. Tilley
A confirmation image of the NEOCP(NEO Confirmation Page)
object A107TVP(now 2018 PL9) on 2018-08-07
 from Siding Spring Observatory, Coonabarabran, NSW, Australia. (MPC Q62) 
a stack of 9 - 60 second luminance BIN2 images 
 taken with iTelescope.net's (T30) 
 By Steven M. Tilley



A confirmation image of the NEOCP(NEO Confirmation Page)
object A107TVP(now 2018 PL9) on 2018-08-07
 from Siding Spring Observatory, Coonabarabran, NSW, Australia. (MPC Q62) 
a stack of 9 - 60 second luminance BIN2 images 
 taken with iTelescope.net's (T30) 
 By Steven M. Tilley

I submitted three observations of A107TVP to the MPC in the "new" "Astrometry Data Exchange Standard (ADES)" format [PSV -"Pipe Separated Values"] at 2018-08-07T18:00:23.907Z. I got the  automatic acknowledgement e-mail at  18:03 (UTC) and an "Automated NEOCP candidate posting results" e-mail at 18:11 (UTC).

On 2018-08-08 I took  and submitted  three additional observations.

A confirmation image of the NEOCP(NEO Confirmation Page)
object A107TVP(now 2018 PL9) on 2018-08-08
 from Siding Spring Observatory, Coonabarabran, NSW, Australia. (MPC Q62) 
a stack of 10 - 60 second luminance BIN2 images 
 taken with iTelescope.net's (T30) 
 By Steven M. Tilley

A confirmation image of the NEOCP(NEO Confirmation Page)
object A107TVP(now 2018 PL9) on 2018-08-08
 from Siding Spring Observatory, Coonabarabran, NSW, Australia. (MPC Q62) 
a stack of 10 - 60 second luminance BIN2 images 
 taken with iTelescope.net's (T30) 
 By Steven M. Tilley

A confirmation image of the NEOCP(NEO Confirmation Page)
object A107TVP(now 2018 PL9) on 2018-08-08
 from Siding Spring Observatory, Coonabarabran, NSW, Australia. (MPC Q62) 
a stack of 10 - 60 second luminance BIN2 images 
 taken with iTelescope.net's (T30) 
 By Steven M. Tilley
Over three days the following observatories  submitted observations of A107TVP:


  • (711) McDonald Observatory, Fort Davis, Texas,US
  • (850) Cordell-Lorenz Observatory, Sewanee, Tennessee, US 
  • (E23) Arcadia,NSW, Australia.
  • (F51) Pan-STARRS 1, Haleakala, Hawaii, US   
  • (J04) ESA Optical Ground Station, Tenerife, Canary Islands, Spain
  • (L01) Višnjan Observatory, Tican, Croatia. 
  • (P93) Space Tracking and Communications Center, JAXA, Japan.
  • (Q62) iTelescope Observatory, Siding Spring,NSW, Australia. 
  • (T05) ATLAS-HKO, Haleakala, Hawaii,US.
  • (X31) Galileo Galilei Observatory, Oro Verde, Argentina.
  • (X74) Observatório Campo dos Amarais, Brazil.
On 2018-08-10 at 15:24 UTC the MPC Issued "MPEC 2018-P46 : 2018 PL9" assigning the provisonal designations "2018 PL9" to the "new" asteroid.


Jun 1, 2018

Confirmation Images of the COMET C/2018 K1 (Weiland)

On 2018 05 25 Henry Weiland an observer with ATLAS-MLO(Asteroid Terrestrial-impact Last Alert System ---Mauna Loa) reported a possible comet to the Minor Planet Center in Cambridge, Massachusetts, USA.  This possible comet was reported using the observer-assigned temporary designation "A1072Wf".  It was posted to the Possible Comet Confirmation Page(PCCP) and came to the attention of observer around the world. On 2018-05-26 I woke up, check iTelescope.net and saw that their facility in Siding Spring Observatory, AU was open. So had T30 started an imaging run of  60 - 60-second luminance BIN2 images and went out to eat breakfast. I got back made four stacks of 5 so can work around "stars that were in the way." I submitted my observations, as more observations came in and as the morning change to the afternoon, I saw my observations had poor residuals, so I did imaging run of  60 - 60-second luminance BIN2 images on T27.

A confirmation image of COMET C/2018 K1 (Weiland)
[was the PCCP(Possible Comet Confirmation Page)object A1072Wf] on 2018-05-26
from Siding Spring Observatory, Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 5 - 60 second luminance BIN2 images taken with iTelescope.net's
(T30 TEL 0.50-m f/6.8 reflector + CCD + f/4.5 focal reducer)
By Steven M. Tilley
A confirmation image of COMET C/2018 K1 (Weiland)
[was the PCCP(Possible Comet Confirmation Page)object A1072Wf] on 2018-05-26
from Siding Spring Observatory, Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 5 - 60 second luminance BIN2 images taken with iTelescope.net's
(T30 TEL 0.50-m f/6.8 reflector + CCD + f/4.5 focal reducer)
By Steven M. Tilley
A confirmation image of COMET C/2018 K1 (Weiland)
[was the PCCP(Possible Comet Confirmation Page)object A1072Wf] on 2018-05-26
from Siding Spring Observatory, Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 5 - 60 second luminance BIN2 images taken with iTelescope.net's
(T30 TEL 0.50-m f/6.8 reflector + CCD + f/4.5 focal reducer)
By Steven M. Tilley
A confirmation image of COMET C/2018 K1 (Weiland)
[was the PCCP(Possible Comet Confirmation Page)object A1072Wf] on 2018-05-26
from Siding Spring Observatory, Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 5 - 60 second luminance BIN2 images taken with iTelescope.net's
(T30 TEL 0.50-m f/6.8 reflector + CCD + f/4.5 focal reducer)
By Steven M. Tilley
A confirmation image of COMET C/2018 K1 (Weiland)
[was the PCCP(Possible Comet Confirmation Page)object A1072Wf] on 2018-05-26
from Siding Spring Observatory, Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 5 - 60 second luminance BIN2 images taken with iTelescope.net's
(T27 TEL 0.70-m f/6.6 reflector + CCD)
By Steven M. Tilley
A confirmation image of COMET C/2018 K1 (Weiland)
[was the PCCP(Possible Comet Confirmation Page)object A1072Wf] on 2018-05-26
from Siding Spring Observatory, Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 5 - 60 second luminance BIN2 images taken with iTelescope.net's
(T27 TEL 0.70-m f/6.6 reflector + CCD)
By Steven M. Tilley
A confirmation image of COMET C/2018 K1 (Weiland)
[was the PCCP(Possible Comet Confirmation Page)object A1072Wf] on 2018-05-26
from Siding Spring Observatory, Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 5 - 60 second luminance BIN2 images taken with iTelescope.net's
(T27 TEL 0.70-m f/6.6 reflector + CCD)
By Steven M. Tilley
A confirmation image of COMET C/2018 K1 (Weiland)
[was the PCCP(Possible Comet Confirmation Page)object A1072Wf] on 2018-05-26
from Siding Spring Observatory, Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 5 - 60 second luminance BIN2 images taken with iTelescope.net's
(T27 TEL 0.70-m f/6.6 reflector + CCD)
By Steven M. Tilley




 Background
(as of 2018-05-31)

  • Object: COMET C/2018 K1 (Weiland) 
  • Orbit Type: Halley-type Comet
  • First(Precovery) observation was made on: 2017 11 06.24388
  • First(Precovery) observation was made by:  Pan-STARRS 1, Haleakala (MPC Code F51)
  • Discovery observation was made on: 2018 05 25.54194
  • Discovery observation was made by : ATLAS-MLO, Mauna Loa  (MPC Code T08)
  • The Discovery M.P.E.C.: MPEC 2018-K117: COMET C/2018 K1 (Weiland)
  • Last Observation (publish): 2018 05 30.34974  (from Steward Observatory, Kitt Peak - Spacewatch  (MPC Code 691) ) 
  • Data-Arc Span (publish):  205 days 
  • Number of Optical Observations(published):  91
  • Observatories reporting (published) observations(MPC Code): 
    • (349) Ageo, Japan. 
    • (372) Geisei, Japan. 
    • (691) Steward Observatory, Kitt Peak - Spacewatch, US/Arizona. 
    • (E23) Arcadia, Australia/NSW. 
    • (F51) Pan-STARRS 1, Haleakala, US/Hawaii 
    • (H06) iTelescope Observatory, Mayhill, US/New Mexico 
    • (H47) Vicksburg, US/Mississippi. 
    • (I47) Pierre Auger Observatory, Malargüe, Argentina. 
    • (I52) Steward Observatory, Mt. Lemmon Station US/Arizona. 
    • (Q62) iTelescope Observatory, Siding Spring, Australia/NSW.
    • (T08) ATLAS-MLO, Mauna Loa, US/Hawaii.
    • (W88) Slooh.com Chile Observatory, La Dehesa, Chile. 
    • (W96) CAO, San Pedro de Atacama (since 2013), Chile. 
    • (Y00) SONEAR Observatory, Oliveira, Brazil. 
  • Perihelion Distance 1.879151252869776 (AU) 
  • Aphelion Distance:  57.90074646767503 (AU) 
  • Earth MOID (Earth center to NEO center): 0.886103 AU (( 344.846 LD)), (20,806.64 Earth radii) or miles 82,368,419.687 ( 132,559,122.013 ( KM))[If the Earth was the size of a basketball this would be 8,210.36 Feet( 2,502.52 Meters)]

Apr 23, 2018

Confirmation images of the NEO 2018 HC1

A confirmation image of the NEO 2018 HC1 on
2018-04-21 from Siding Spring Observatory,
Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 15 - 05 Second Luminance BIN2
images taken with iTelescope.net's
(T30 TEL 0.50-m f/6.8 reflector + CCD + f/4.5 focal reducer)
By Steven M. Tilley
A confirmation image of the NEO 2018 HC1 on
2018-04-21 from Siding Spring Observatory,
Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 15 - 05 Second Luminance BIN2
images taken with iTelescope.net's
(T30 TEL 0.50-m f/6.8 reflector + CCD + f/4.5 focal reducer)
By Steven M. Tilley
A confirmation image of the NEO 2018 HC1 on
2018-04-21 from Siding Spring Observatory,
Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 15 - 05 Second Luminance BIN2
images taken with iTelescope.net's
(T30 TEL 0.50-m f/6.8 reflector + CCD + f/4.5 focal reducer)
By Steven M. Tilley

Mar 31, 2015

Confirmation Images of COMET C/2015 F4 (JACQUES) On 2015-03-28

COMET C/2015 F4 (JACQUES) was discovered on 2015 03 21 by C. Jacques, Belo Horizonte, MG, Brazil at SONEAR Observatory, Oliveira. Also see : MPEC 2015-F159: COMET C/2015 F4 (JACQUES)
COMET C/2015 F4 (JACQUES) 6X60 Luminance bin2 itelescope.net telescope-t30
on 2015-03-28 by Steven M Tilley

Jan 23, 2015

Imaging Run on (357439) 2004 BL86 from MPC Q62 Plan for 2015-01-24

On the (2015-01-24) starting at 10:50 UTC, I plan to be imaging (357439) 2004 BL86 from Siding Spring, Australia (MPC Q62) [itelescope.net] on (TEL T30 0.50-m f/6.8 astrograph + CCD + f/4.5 focal reducer) I will be taking 5 Second Luminance BIN1 Images and hope to get up to 100 of (357439) 2004 BL86.

Background

The NEO (357439) 2004 BL86 (Orbit type: Apollo ) (estimated to be 440–1000 meters in diameter) will safely make a Close-Approach of 3.1 Lunar Distance on 26 January 2015. This will be the closest known Approach by something this large (H = 19.0) until 2027, and will briefly peak at around apparent magnitude 9.0 It has been schedule for Goldstone Observations(2015 Jan 27-Feb 1).

Videos from past runs on  (357439) 2004 BL86:




Useful Links:

Jan 18, 2015

The Asteroid (357439) = 2004 BL86 On the Night of 2015-01-17

The NEO (357439) 2004 BL86 (Orbit type: Apollo ) (estimated to be 440–1000 meters in diameter) will safely make a Close-Approach of 3.1 Lunar Distance on 26 January 2015. This will be the closest known Approach by something this large (H = 19.0) until 2027, and will briefly peak at around apparent magnitude 9.0 It has been schedule for Goldstone Observations(2015 Jan 27-Feb 1).


The Asteroid (357439) = 2004 BL86 On the Night of 2015-01-17
For Siding Spring Observatory,Coonabarabran, NSW, Australia.(MPC Code Q62)
50 -- 30 Second Luminance BIN1
taken with iTelescope Net's
Telescope T30
(0.50-m f/6.8 astrograph + CCD + f/4.5 focal reducer)
2015-01-17 10:47 UTC to 11:39 UT
(c) Steven M. Tilley


APPROVED for web embedding and media broadcasts with full and complete attribution TO: (c) Steven M. Tilley http://lagniappeobserving.blogspot.com 

The Asteroid (357439) = 2004 BL86 On the Night of 2015-01-17 From Siding Spring Observatory,Coonabarabran, NSW, Australia.(MPC Code Q62)a stack of 50 -- 30 Second Luminance BIN1taken with iTelescope Net  Telescope T30(0.50-m f/6.8 astrograph + CCD + f/4.5 focal reducer)2015-01-17 10:47 UTC to 11:39 UT (c) Steven M. Tilley

 Links:
Asteroid to fly by Earth safely January 26(Astronomy Magazine)
Asteroid 2004 BL86 to sweep close on January 26(EarthSky)
Big Asteroid 2004 BL86 Buzzes Earth on January 26: How to See it in Your Telescop(Universe Today)
Big Asteroid to Zoom by Earth on Jan. 26(space.com)
Asteroid to Fly By Earth Safely on January 26 (Jet Propulsion Laboratory, Pasadena, Calif.; January 13, 2015)
Observations(MPC)
Orbital Elements (JPL)
(357439) 2004BL86 -- ESA Space Situational Awareness
(357439) 2004BL86 Ephemerides for 25 January 2015 through 29 January(NEODyS-2)
Goldstone Radar Observations Planning
Goldstone Asteroid Schedule
Planetary Radar at Arecibo Observatory
JPL Absolute Magnitude table (H)
Abstract for Run 3579(Caltech)
Goldstone Solar System Radar by Marina Brozović,Jet Propulsion Laboratory, California Institute of Technology
Wikipedia (357439) 2004 BL86

The NEO (357439) 2004 BL86 (Orbit type: Apollo ) from Siding Spring - Australia - MPC Q62 on 2015-01-17



The NEO (357439) 2004 BL86  (Orbit type: Apollo ) from Siding Spring - Australia - MPC Q62 on 2015-01-17 4 - 30 Second Luminance BIN1 taken with (TEL T30 0.50-m f/6.8 astrograph + CCD + f/4.5 focal reducer)   [iTelescope.Net ] 


Dec 29, 2014

The NEO (357439) 2004 BL86 On the Night of 2014-12-29

The NEO (357439) 2004 BL86 (Orbit type: Apollo ) (estimated to be 440–1000 meters in diameter) will safely make a Close-Approach of 3.1 Lunar Distance on 27 January 2015. This will be the closest "known" Approach by something this large (H = 18.8) until 2027, and may will briefly peak at around apparent magnitude 9. It has been schedule for Goldstone Observations(2015 Jan 27-Feb 1).
The NEO (357439) 2004 BL86 On the Night of 2014-12-29 from Siding Spring Observatory, Coonabarabran, NSW, Australia. (MPC Q62) 3 stacks of 6 - 60 Second Luminance BIN2 Images (Sky Motion: 0.549"/min P.A.98.4;0.556"/min P.A.98.1;0.562"/min P.A.97.8) taken with iTelescope.Net 's (TEL T30 0.50-m f/6.8 astrograph + CCD + f/4.5 focal reducer) stack 1:2014 12 29.49558(11:53:38 UT) stack 2:2014 12 29.50487(12:07:01 UT) stack 3:2014 12 29.51289(12:18:34 UT) (C)Steven M. Tilley

Links:
Asteroid to Fly By Earth Safely on January 26 (Jet Propulsion Laboratory, Pasadena, Calif.; January 13, 2015)
Observations(MPC)
 Orbital Elements (JPL) (357439) 2004BL86 -- ESA Space Situational Awareness
Goldstone Radar Observations Planning
(357439) 2004BL86 Ephemerides for 25 January 2015 through 29 January(NEODyS-2)
Goldstone Asteroid Schedule Planetary Radar at Arecibo Observatory
JPL Absolute Magnitude table (H) Abstract for Run 3579(Caltech)
 Goldstone Solar System Radar by Marina Brozović,Jet Propulsion Laboratory, California Institute of Technology
Wikipedia (357439) 2004 BL86

The NEO (357439) 2004 BL86 On the Night of 2014-12-29-Data


The NEO (357439) 2004 BL86 (Orbit type: Apollo ) from Siding Spring - Australia - MPC Q62 on 2014-12-29 3 stacks of 6 - 60 Second Luminance BIN2 (Sky Motion 0.549"/min P.A.98.4, 0.556"/min P.A.98.1, 0.562"/min P.A.97.8) taken with ((TEL T30 0.50-m f/6.8 astrograph + CCD + f/4.5 focal reducer) [iTelescope.Net ]

May 12, 2014

Asteroid 2011 JR13

Asteroid 2011 JR13 (Orbit type:Apollo [PHA])

 Part 1: 17 -- 60 Second Luminance Images from the night of 2014-05-10 iTelescope.Net (T11 0.50-m f/6.8 astrograph + CCD + f/4.5 focal reducer) MPC Code H06 (Mayhill, New Mexico, USA) 2014-05-11 09:36 to 10:11 UTC Images By Steven M. Tilley

 Part 2: 5 -- 20 Second R Mag Images from the night of 2014-05-11 SLOOH.com (T2 0.35 meter f/11 Schmidt-Cassegrain) MPC Code G40 (Mt. Teide, Canary Islands, Spain) 1: 2014-05-12 04:12:31 UTC; 2: 2014-05-12 04:22:14 UTC; 3: 2014-05-12 04:43:03 UTC; 4: 2014-05-12 04:57:14 UTC; 5: 2014-05-12 05:13:01 UTC SLOOH Images Scheduled By Steven M. Tilley

Part 3:8 -- 60 Second Luminance Images from the night of 2014-05-12 iTelescope.Net (TEL T30 0.50-m f/6.8 astrograph + CCD + f/4.5 focal reducer) MPC Code Q62 (Siding Spring - Australia) 2014-05-12 13:22 to 13:38 UTC Images By Steven M. Tilley

Other Links:

Mar 14, 2014

COMET C/2014 E2 (JACQUES)


COMET C/2014 E2 (JACQUES) 20 -- 30 Second Luminance From ITelescope Net Telescope T30 (0.50-m f/6.8 astrograph + CCD + f/4.5 focal reducer) 13-Mar-2014 16:48:21 UTC to 17:22:55 UTC By Steven M. Tilley