Translate

Jun 24, 2018

The asteroid 2018 MW6 on 2018-06-23


The asteroid 2018 MW6(Classification: Apollo [NEO, PHA])
on 2018-06-23 from Siding Spring Observatory,
Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 22-60 second luminance BIN2 images taken with
iTelescope.net's
(T17 TEL 0.43-m f/6.8 reflector + CCD)
By Steven M. Tilley
The asteroid 2018 MW6(Classification: Apollo [NEO, PHA])
on 2018-06-23 from Siding Spring Observatory,
Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 22-60 second luminance BIN2 images taken with
iTelescope.net's
(T17 TEL 0.43-m f/6.8 reflector + CCD)
By Steven M. Tilley
The asteroid 2018 MW6(Classification: Apollo [NEO, PHA])
on 2018-06-23 from Siding Spring Observatory,
Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 15-60 second luminance BIN2 images taken with
iTelescope.net's
(T30 TEL 0.50-m f/6.8 reflector + CCD + f/4.5 focal reducer)
By Steven M. Tilley
The asteroid 2018 MW6(Classification: Apollo [NEO, PHA])
on 2018-06-23 from Siding Spring Observatory,
Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 15-60 second luminance BIN2 images taken with
iTelescope.net's
(T30 TEL 0.50-m f/6.8 reflector + CCD + f/4.5 focal reducer)
By Steven M. Tilley
The asteroid 2018 MW6(Classification: Apollo [NEO, PHA])
on 2018-06-23 from Siding Spring Observatory,
Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 15-60 second luminance BIN2 images taken with
iTelescope.net's
(T30 TEL 0.50-m f/6.8 reflector + CCD + f/4.5 focal reducer)
By Steven M. Tilley
NASA Jet Propulsion Laboratory (JPL) Orbit Diagram for The asteroid 2018 MW6(2018 Jun 23 13:00)
NASA Jet Propulsion Laboratory (JPL) Orbit Diagram for The asteroid 2018 MW6(2018 Jun 23 13:00)

 Background
(as of 2018-06-24)
  •  Object: 2018 MW6
  • Orbit Type: Apollo [NEO, PHA]
  • Approximate Diameter: 310 M  -  750 m  (1017.06  feet to  2460.63 feet)(Absolute Magnitude: H= 19.489)
  • On the Sentry Risk Table:  Yes 
    •  NOTE this is NOT a prediction of an impact but rather a statement there is insufficient observational data rule out an impact -- for more information read  Understanding Risk Pages by Jon Giorgini
  • Torino Scale 0
    • "The likelihood of a collision is zero, or is so low as to be effectively zero. Also applies to small objects such as meteors and bodies that burn up in the atmosphere as well as infrequent meteorite falls that rarely cause damage.."
  • On the NEODyS CLOMON2 risk page: Yes
  • Discovery observation was made: 2018 06 19.26519
  • Discovery observation was made by Mt. Lemmon Survey (MPC Code G96) The Discovery M.P.E.C.:MPEC 2018-M81 : 2018 MW6
  • Last Observation (publish): 2018 06 23.67253 (at iTelescope Observatory, Siding Spring  (MPC Code Q62 ) )
  • Data-Arc Span (publish): 4
  • Number of Optical Observations(published):48
  • Observatories Reporting (Published) Observations(MPC Code):
    • (246) Klet Observatory-KLENOT, Czech Republic.
    • (291) LPL/Spacewatch II,US/Arizona. 
    • (691) Steward Observatory, Kitt Peak - Spacewatch,US/Arizona. 
    • (G96) Mt. Lemmon Survey, US/Arizona.
    • (H01) Magdalena Ridge Observatory, Socorro,US/New Mexico
    • (I52) Steward Observatory, Mt. Lemmon Station, US/Arizona.
    • (J77) Golden Hill Observatory, Stourton Caundle, UK.
    • (J95) Great Shefford,UK.  Observer 
    • (L01) Višnjan Observatory, Tičan, Croatia.
    • (Q62) iTelescope Observatory, Siding Spring, Australia/NSW.
  •  Perihelion Distance:0.7678873680374123(AU)
  •  Aphelion Distance: 6.093862873564613 (AU)
Useful Links:

Jun 9, 2018

Confirmation Images of the COMET C/2018 L2 (ATLAS) on 2018-06-07

...

A confirmation image of the COMET C/2018 L2 (ATLAS)
on 2018-06-07 from Siding Spring Observatory,
Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 5 - 60 second luminance BIN2 images taken
with iTelescope.net's (T27 TEL 0.70-m f/6.6 reflector + CCD)
By Steven M. Tilley


A confirmation image of the COMET C/2018 L2 (ATLAS)
on 2018-06-07 from Siding Spring Observatory,
Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 5 - 60 second luminance BIN2 images taken
with iTelescope.net's (T27 TEL 0.70-m f/6.6 reflector + CCD)
By Steven M. Tilley


A confirmation image of the COMET C/2018 L2 (ATLAS)
on 2018-06-07 from Siding Spring Observatory,
Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 5 - 60 second luminance BIN2 images taken
with iTelescope.net's (T27 TEL 0.70-m f/6.6 reflector + CCD)
By Steven M. Tilley

A confirmation image of the COMET C/2018 L2 (ATLAS)
on 2018-06-07 from Siding Spring Observatory,
Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 5 - 60 second luminance BIN2 images taken
with iTelescope.net's (T27 TEL 0.70-m f/6.6 reflector + CCD)
By Steven M. Tilley



Jun 3, 2018

A Rock Designated ZLAF9B2(now 2018 LA) Social Media and Fireball Reports

On  2018-06-02 Richard A. Kowalski, with the Catalina Sky Survey reported observations of a "new" object, given  the observ3er-assigned temporary designation "ZLAF9B2", to  Minor Planet Center in Cambridge, Massachusetts, USA.  It was posted to the NEOCP(NEO Confirmation Page) making the observations available to asteroid and comet  researcher around the world.   The data was analyzed and posted JPL's Scout: NEOCP Hazard Assessment, independently analyzed and posted to Bill Gray's  Current NEOCP summary page. Then emails  to mailing list post to social madia started going out. It was know to be small at the start.

When wroke up on 2018-06-02 I check iTelescope.net and saw their facility in Siding Spring Observatory, AU was clouded out than I went out to eat breakfast.  When got back just to see what I would observe if I could observe, I check the NEOCP and saw that ZLAF9B2 was "bright",  and  then  check "The Minor Planet Mailing List {MPML}" Some of the asteroid and comet researchers where talking.  The Bill Gray sent and a number of  carefully worded emails to email list  stating ZLAF9B2 should be a "Priority Target".
 
One of the programs available to asteroid and comet researchers is Find_Orb it is useful for calculating approximate ephemeris, determining approximate orbits, residuals,  generating virtual asteroids, virtual impactors, predicting impact locations, and many other things.  It should be noted  IF one uses wrong setting one get a totally wrong solution. One things Find_Orb can be use for is generating a "asteroid risk corridor" with the help of Guide 9.1. This should be done with care because of uncertainties in  observations how one sets the over-observing parameters as well with other setting can the effect the results.  Bill Gray posted post a risk corridor for ZLAF9B2 and I thought I would give it a try. I had Find_Orb generated  virtual asteroids and virtual impactors using a  monte carlo process. 


Here is my TEST with Find_Orb using a monte carlo process see the files here

Here is my TEST with Find_Orb using a monte carlo process see the files here
Before I share my results ZLAF9B2(now 2018 LA)  "impacted" the Earth over southern Africa creating a Fireball. around 2018-06-02 16:45 UT and posts about impact started making.  After the impact two (pre-impact) follow up observations from ATLAS-MLO(Asteroid Terrestrial-impact Last Alert System ---Mauna Loa) were posted to  the NEOCP(NEO Confirmation Page)  Then I did another  monte carlo process with the newly added ATLAS observations.

Test with the newly added ATLAS observations with Find_Orb
 using a monte carlo process see the files here
On 2018-06-04  the Minor Planet Center issues MPEC 2018-L04 : 2018 LA  Stating
"that the objectreached 50-km height above the Earth's surface around 16:51 UTC over southern Africa."

Timeline of SOME of the Post to Social Media














Jun 1, 2018

Confirmation Images of the COMET C/2018 K1 (Weiland)

On 2018 05 25 Henry Weiland an observer with ATLAS-MLO(Asteroid Terrestrial-impact Last Alert System ---Mauna Loa) reported a possible comet to the Minor Planet Center in Cambridge, Massachusetts, USA.  This possible comet was reported using the observer-assigned temporary designation "A1072Wf".  It was posted to the Possible Comet Confirmation Page(PCCP) and came to the attention of observer around the world. On 2018-05-26 I woke up, check iTelescope.net and saw that their facility in Siding Spring Observatory, AU was open. So had T30 started an imaging run of  60 - 60-second luminance BIN2 images and went out to eat breakfast. I got back made four stacks of 5 so can work around "stars that were in the way." I submitted my observations, as more observations came in and as the morning change to the afternoon, I saw my observations had poor residuals, so I did imaging run of  60 - 60-second luminance BIN2 images on T27.

A confirmation image of COMET C/2018 K1 (Weiland)
[was the PCCP(Possible Comet Confirmation Page)object A1072Wf] on 2018-05-26
from Siding Spring Observatory, Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 5 - 60 second luminance BIN2 images taken with iTelescope.net's
(T30 TEL 0.50-m f/6.8 reflector + CCD + f/4.5 focal reducer)
By Steven M. Tilley
A confirmation image of COMET C/2018 K1 (Weiland)
[was the PCCP(Possible Comet Confirmation Page)object A1072Wf] on 2018-05-26
from Siding Spring Observatory, Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 5 - 60 second luminance BIN2 images taken with iTelescope.net's
(T30 TEL 0.50-m f/6.8 reflector + CCD + f/4.5 focal reducer)
By Steven M. Tilley
A confirmation image of COMET C/2018 K1 (Weiland)
[was the PCCP(Possible Comet Confirmation Page)object A1072Wf] on 2018-05-26
from Siding Spring Observatory, Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 5 - 60 second luminance BIN2 images taken with iTelescope.net's
(T30 TEL 0.50-m f/6.8 reflector + CCD + f/4.5 focal reducer)
By Steven M. Tilley
A confirmation image of COMET C/2018 K1 (Weiland)
[was the PCCP(Possible Comet Confirmation Page)object A1072Wf] on 2018-05-26
from Siding Spring Observatory, Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 5 - 60 second luminance BIN2 images taken with iTelescope.net's
(T30 TEL 0.50-m f/6.8 reflector + CCD + f/4.5 focal reducer)
By Steven M. Tilley
A confirmation image of COMET C/2018 K1 (Weiland)
[was the PCCP(Possible Comet Confirmation Page)object A1072Wf] on 2018-05-26
from Siding Spring Observatory, Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 5 - 60 second luminance BIN2 images taken with iTelescope.net's
(T27 TEL 0.70-m f/6.6 reflector + CCD)
By Steven M. Tilley
A confirmation image of COMET C/2018 K1 (Weiland)
[was the PCCP(Possible Comet Confirmation Page)object A1072Wf] on 2018-05-26
from Siding Spring Observatory, Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 5 - 60 second luminance BIN2 images taken with iTelescope.net's
(T27 TEL 0.70-m f/6.6 reflector + CCD)
By Steven M. Tilley
A confirmation image of COMET C/2018 K1 (Weiland)
[was the PCCP(Possible Comet Confirmation Page)object A1072Wf] on 2018-05-26
from Siding Spring Observatory, Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 5 - 60 second luminance BIN2 images taken with iTelescope.net's
(T27 TEL 0.70-m f/6.6 reflector + CCD)
By Steven M. Tilley
A confirmation image of COMET C/2018 K1 (Weiland)
[was the PCCP(Possible Comet Confirmation Page)object A1072Wf] on 2018-05-26
from Siding Spring Observatory, Coonabarabran, NSW, Australia. (MPC Q62)
a stack of 5 - 60 second luminance BIN2 images taken with iTelescope.net's
(T27 TEL 0.70-m f/6.6 reflector + CCD)
By Steven M. Tilley




 Background
(as of 2018-05-31)

  • Object: COMET C/2018 K1 (Weiland) 
  • Orbit Type: Halley-type Comet
  • First(Precovery) observation was made on: 2017 11 06.24388
  • First(Precovery) observation was made by:  Pan-STARRS 1, Haleakala (MPC Code F51)
  • Discovery observation was made on: 2018 05 25.54194
  • Discovery observation was made by : ATLAS-MLO, Mauna Loa  (MPC Code T08)
  • The Discovery M.P.E.C.: MPEC 2018-K117: COMET C/2018 K1 (Weiland)
  • Last Observation (publish): 2018 05 30.34974  (from Steward Observatory, Kitt Peak - Spacewatch  (MPC Code 691) ) 
  • Data-Arc Span (publish):  205 days 
  • Number of Optical Observations(published):  91
  • Observatories reporting (published) observations(MPC Code): 
    • (349) Ageo, Japan. 
    • (372) Geisei, Japan. 
    • (691) Steward Observatory, Kitt Peak - Spacewatch, US/Arizona. 
    • (E23) Arcadia, Australia/NSW. 
    • (F51) Pan-STARRS 1, Haleakala, US/Hawaii 
    • (H06) iTelescope Observatory, Mayhill, US/New Mexico 
    • (H47) Vicksburg, US/Mississippi. 
    • (I47) Pierre Auger Observatory, Malargüe, Argentina. 
    • (I52) Steward Observatory, Mt. Lemmon Station US/Arizona. 
    • (Q62) iTelescope Observatory, Siding Spring, Australia/NSW.
    • (T08) ATLAS-MLO, Mauna Loa, US/Hawaii.
    • (W88) Slooh.com Chile Observatory, La Dehesa, Chile. 
    • (W96) CAO, San Pedro de Atacama (since 2013), Chile. 
    • (Y00) SONEAR Observatory, Oliveira, Brazil. 
  • Perihelion Distance 1.879151252869776 (AU) 
  • Aphelion Distance:  57.90074646767503 (AU) 
  • Earth MOID (Earth center to NEO center): 0.886103 AU (( 344.846 LD)), (20,806.64 Earth radii) or miles 82,368,419.687 ( 132,559,122.013 ( KM))[If the Earth was the size of a basketball this would be 8,210.36 Feet( 2,502.52 Meters)]